

Important reference projects for tunnel ventilation

Road tunnel ventilation systems

- Tunnel Craptaig / Switzerland (2170 m)
- Tunnel Roveredo / Switzerland (2300 m)
- Tunnel Leifers / Italy (2860 m)
- Tunnel Lungern / Switzerland (3550 m)
- Elbtunnel / Germany (2950 m)
- Zürich Western Ring / Switzerland (2175m)
- Tunnel Seelisberg / Switzerland (9200 m)
- Tunnel Roppener / Austria (5100 m)
- Tunnel Arlberg / Austria (13930m)

Railway tunnel ventilation systems

- Gotthard Base Tunnel / Switzerland (57 km)
- Furka Tunnel / Switzerland (15,4 km)
- Oresund Tunnel / Denmark Sweden (4 km)

Metro tunnel ventilation systems

- London HeathrowTerminal 5 / Great Britain (19 km)
- Metro Almaty / Kazakhstan (8,5 km)
- Metro Baku / Azerbaijan (3,5km)

TLT's metro references worldwide

Reference 1

Longest railway tunnel worldwide Gotthard Base Tunnel, Switzerland

TLT's newest reference project for tunnel ventilation systems (TVS)

Longest railway tunnel worldwide

Gotthard Base Tunnel, Switzerland

Scope: "TVS" Tunnel Ventilation System

Construction time:	17 years
TLT-Part:	5 years
Investment:	21,5 Billion EUR
TLT-Part:	48 Million EUR

Customer's decision for TLT because a full range integrated solution was requested

TLT's newest reference project for tunnel ventilation systems (TVS)

Longest railway tunnel worldwide

Gotthard Base Tunnel, Switzerland

Scope: "TVS" Tunnel Ventilation System

400 fans with drive systems, cabling, station control system, fire detection device system, medium/low voltage system, installations, commissioning and testing

... for health & saftey

Fresh Air for the World's longest Railway Tunnel

Longest railway tunnel worldwide 2x57 Km Gotthard Base Tunnel, Switzerland

Scope: "TVS" Tunnel Ventilation System with fans, drive system, cabling, station control system, fire detection device system, medium/low voltage system, installations, commissioning and testing

Fresh Air for the World's longest Railway Tunnel

152 km of tunnel system incl. 2 x 57 km main tunnel with 180 cross passage tubes

TLT as consortium leader for tunnel ventilation system

- High speed test with 275 km/h
- Fulfillment of Swiss customers high availability targets of > 99,8%
- Energy saving upto 18% due to TLT's optimization compared to design
- Integrated system for high complexity with from one source
- 30 years life time requirement for ventilation equipment

Fan System and installation for the World's longest Railway Tunnel

- 4 supply fans each 28 t
- 4 smoke exhaust fans each 28t
- 24 exhaust dampers
- 360 overpressure fans
- 24 special jet fans

Number of trucks: 32 Total equipment weight: approx. 550t

Logistics Medium Project Site Voltage Transformer Management Management Switchgear **Electric** Fire Main-Service Equipre or System Jet Fan Silencers Detection Installation Tenance Device High Dampers Fan **Pressure Fan** Comissioning Local Docu-Ventilation Cabling **Control System** Testina Mentation Equipment Tunnel Equipment Training Sensors Over Ducting Pressure Fan Steel **Gotthard Base Tunnel Tunnel Fan** Construction **Ventilation System** Feasibility Study System Optimization **TVS Engineering** Simulation System Design BoQ 9 © TLT-Turbo GmbH 2017

Scope of Supply

Fan Equipment

- 4 Tunnel Fans for fresh air
- 4 Tunnel Fans for exhaust air (temp. res. 400 C)

Pictures of Tunnel Fans

Fan Equipment

• 24 Jet Fans

Picture of Jet Fan installation

two stages

Picture of high pressure fan

Fan Equipment

• 360 Over pressure fans

Picture of over pressure fans

Ventilation Equipment

- 28 Exhaust air hatches (4,3 m x 5 m)
- 1 Hydraulic fresh air hatch (2 m x 2,5 m, temp. res. 1000 C)
- 2 Air hatches per axial fan

Picture of exhaust air hatch

D

Scope of Supply

Ventilation Equipment

- Silencers
- Steel construction parts
- Ducting

Pictures of silencers

Electric Equipment

- Drive Systems
- Cabling
- Station Control System
- Fire Detection Device System
- Medium/low Voltage System

Pictures of control system and fan monitoring cabinet

Service

- Logistics
- Site management
- Installation
- Commissioning & Testing

Pictures of fan installation

System Design

- Development and improvement of aerodynamic design to reduce pressure drop
- Prevention of smoke recirculation from exhaust to fresh air inlet

Erstfeld Portal

Drawings (extract)

Drawings (extract)

Customer Benefits

Summary

- Reduction of total fan electricity consumption by 1.303 kW (~10 %)
 - > 32.000 MWh over life time
 - 30.500 t CO2 substitution over life time
 - > 4,5 Mio € savings in operating costs over life time

Project life time	Operating hours per year [h/a]	Electricity consumption [kWh]
Construction & Test	5.200	6.760.000
1	650	845.000
2	650	845.000
30	650	845.000
Σ	24.700	32.110.000

Technical Reliability & Safety

TLT-Project

"Gotthard Base Tunnel"

Technological Challenge

- High train speed of 250 km/h and interaction between train and tunnel cause exeptionally high pressure waves
- TLT had to proof to customer that ventilation equipment will withstand the resulting mechanical stress

Customer demand:

- Full size test under real conditions
- 510.000 cycles without interuptions or breaks
- -/+ 10.000 Pa pressure waves

Detail of measuring record for pressure wave tests in TLT test bench [blue: pressure in chamber, red: pressure in outlet]

Preference Letter for worlds longest railway tunnel for TLT's excellent project management

Seite 2 von 3 October, 1st 2014

The Gotthard Base Tunnel consists of two 57-kilometres-long single-track tubes. These are connected together every 325 metres by cross passages. Including all cross-passages, access tunnels and shafts, the total length of the tunnel system is over 152 km. It joins the north portal at Erstfeld to the south portal at Bodio. With a rock overburden of up to 2300 metres, the Gotthard Base Tunnel is also the

Two multifunction stations at Faido and Sedrun divide the two tubes into three approximately equally long sections. The multifunction stations each contain emergency stop stations and two track crosso-vers. In case of an incident such as a fire in the train or a fault in the Gotthard Base Tunnel (GBT). whenever possible the affected train travels out of the tunnel into the open air. If this is not possible,

Development, manufacture, delivery and installation of all the elements of the operational ventilation GBT (including 8 Axial fans, 24 jet fans, 28 smoke and heat vents incl. energy supply and control).

Development (design), manufacture, supply and installation of fire detection system in the multifunc-

All tests / certificates from receiving material, workshop and factory tests, tests on the site (including delivery and installation tests) to the commissioning of the components and the acceptance during the commissioning phase A of the GBT as well as various special tests and verifications obtained through

Delivery of the required materials and accessories for all necessary installation, maintenance and repair

Project- and construction management (participation in meetings, coordination with the client and the

Provision of technical personnel for the maintenance of the equipment after the technical inspection (following assembly) and the revision / Repair of the equipment prior to commissioning phase A of the

Provision of technical personnel and measurement equipment for commissioning, Integration into the overall system and the acceptance during the commissioning phase A of the GBT

Provision of technical personnel and appropriate documentation for the Instruction of operating and

Development of a user's manual for the maintenance personnel in German and Italian

In 2016 a 5-vears maintenance contract was signed for 5 Million €

Reference 2

Reference project for tunnel ventilation systems (TVS)

Metro Almaty Line 1 (Kazakhstan)

Scope: "TVS" Tunnel Ventilation System with fans, drive system, local control system, silencers, dampers, installation, commissioning and testing

TVS (fans)

- 36 TA Metro supply / exhaust fans
- 250°C / 1h temperature resistant

Cooling equipment for electrical rooms

Picture of Metro Fan for Metro Almaty

Fan Equipment

 36 round dampers (temp. res. 250 C°)

Picture of damper for Metro Almaty

Frequency converter & control panels

- 36 VSDs
- 36 control panels

Picture of VSD & control panel for Metro Almaty

Service

• Testing (FAT)

Picture of metro fan testing

Service

Onsite commissioning

Picture of metro fan commissioning

Drawings (extract)

Drawings (extract)

Customer Benefits

Summary

- Reduction of total fan types
 - > 28 operating points for 36 fans
 - Result only in 3 fan types

> savings in spare parts

- Less variation in spare parts
- Less storage costs
- Less costs

Teillieferios				Teillos 1:	Rajymbek	<u> </u>		Т	elllos 2: 8	hibek Sho	lý	1	Tellios	3: Almaly			Teillos	4: Abaja		
			104	-		-	0005	-		-		-		-	1 0040	-			1 0047	
Maschinennummer		38	101	3802	3803	3804	3800	3800	3807	3808	3809	3810	3811	3812	3813	3814	3815	3810	3817	
Bedienselte (Blick auf Laufrad)		R		8	L	R	1	R	RL	R	L	R	1	R	L	R	L	R	6	
Frequenzumrichtertyp		LV700	00.0061	LV700	0.0061	LV700	00.0140	LV700	0.0105	LV700	0.0105	LV700	0.0105	LV70	00.0105	LV700	0.0105	LV700	00.0140	
Schwingungsaufnehmer		341	1265	341266	341267	341268	341269	341270	341271	341272	341273	341274	341275	341276	341277	341278	341279	341280	341281	
Standort der Ventilatoren		Ventilatio PK 24	nskammer 107.300	Sta Rajy	tion mbek	Ventilatio PK 10	nskammer +16.400	Sta Shibe	tion k Sholy	Ventilatio PK 22	nskammer +63.741	Sta Alr	tion naily	Ventilatic PK 31	nskammer +63.000	Sita	ition saja	Ventilatio PK 45	nskamme +40.187	
Ventilatortype	11	TA 1	4/7-1	TA 14/7-1		TA 16/7-1		TA 16/7-1		TA 1	4/7-1	TA 1	4/7-1	TA 14/7-1		TA 10/7-1		TA 14/7-1		
Anzahl der Ventliatoren	11	-	1	1000	2		2		2		2	2		2		2		2		
Volumenstrom	[m ⁰ /s]	15,28	12,22	22,92	18,19	38,89	37,22	37,50	30,56	33.33	26.67	31,94	25,56	33,33	25.67	36.53	28,89	36.11	28,89	
Dichte	[kg/m ²]	1	,2	1	2	1,2		1,2		1,2		1,2		1.2		1,2		1,2		
Druckverlust Anlage	[Pa]	600	620	680	710	690	580	690	680	660	560	650	580	660	560	700	080	700	080	
Druckverlust Ventilator- gesamteinheit	(Pa)	78	50	175	110	312	285	290	193	370	237	340	217	370	237	275	172	434	278	
Totaldruckverlust	[Pa]	678	670	855	820	1002	860	980	873	1030	797	990	797	1030	797	975	852	1134	958	
Stufenwirkungsgrad	1761	65.5	59	72	67.5	73	73.5	73	72	74	73	74	72.5	74	73	72.5	72	73.5	71	
Kraftbedarf an der Ventilatorwelle	RW1	15.8	13.9	27.2	22.1	53.4	43.9	50.4	37.0	46.4	29.1	42.7	28.1	40.4	29.1	49.1	34.2	55.7	39.0	
Gewählte Motornenn- leistung	[RW]	11	8,5		10		75		55		50		45		55		35		75	
Motorbetriebsdrehzahl	[min']	1189	1135	1480	1335	1451	1374	1420	1255	1480	1269	1443	1236	1480	1269	1399	1216	1480	1296	
zulässige Maximaldrehzahi	Imin'1	12	200	14	90	14	460	14	20	14	190	14	60	14	190	14	20	14	490	
Motortyp	11	YHR	225 S4	Y11R	225 84	¥21R	280 M4	Y21R	280 54	Y21R	280 84	Y21R	280 54	Y21R	280 S4	Y218	280 S4	Y21R	280 M4	
Kennfeld	11	4SD00781		4SD00782		4SD00783		4SD00784		4SD00785		4SD00786		4SD00787		4SD00788		4SD00789		
Schallspektrum	[]	455	00349	455	00350	485	00351	4550	00352	455	00353	45500354		455	45500355		45500356		45500357	
Schautetwinkel	19	+1	5.5	+1	5.5	+	18	+	18	+2	2.5	+2	2.5	+5	2,5	+18		+25		
Betriebsnunkt	11	w	R.	w	R.	w	R.	w		14/	100 M	147	ĸ	107	K.	w	1 K 1	w	I K	

Tellileferios	1		Teillos 5	Bajkonur		Teillos 6: Tulpar							Tellios 7: Alatau			
Maschinennummer		3818	3819	3820	3821	3822	3823	3824	3825	3820		3827	3828	3829		
Bedienselte (Blick auf Laufrad)	Laufrad) R L		L	R L		RL		RL		R		R	L			
Frequenzumrichtertyp		LV7000.0140		LV700	0.0105	LV7000.0140		LV700	00.0168	LV700	0.0168	LV7000.0105				
Schwingungsaufnehmer		341282	341283	341284	341285	341286	341287	341288	341289	341	290	341291	341292			
Standort der Ventilatoren		Station Bajkonur		Ventilatio PK 62	nskammer +57.100	Station Tulpar		Ventilatio PK 74	nskammer +90.000	Ventili durd PK 73-	ations- hhieb	Station Alatau				
Ventilatortype	11	TA 16/7-1		TA 14/7-1		TA 16/7+3		TA 16/7-1		TA 16/7-1		TA 14/7-1		BVAXO10/50/1000F		
Anzahl der Ventilatoren	11	1	2	1	2	1	2	2	2	Second St.	1		2	1		
Volumenstrom	[m ^a /s]	40.28	32.22	33.33	25,67	40.28	31,39	50.00	44.72	50.00	44,72	30.56	25,00	6,15		
Dichte	[kg/m*]	1.2		1.2		1.2		1.2		1.2		1,2		1,2		
Druckverlust Anlage	[Pa]	670	680	660	580	670	680	670	700	670	700	690	500	450		
Druckverlust Ventilator- gesamteinheit	[Pa]	335	214	370	237	335	203	510	413	516	413	311	208	50		
Totaldruckverlust	[Pa]	1005	894	1030	817	1005	883	1185	1113	1180	1113	1001	808	500		
Stutenwirkungsgrad	[56]	73.5	72	74	73	73.5	72	75	74	75	74	73.5	72	46		
Krafibedarf an der Ventilatorwelle	[kW]	55,1	40,0	46.4	29,8	55.1	38,5	79.1	67,3	79.1	67.3	41,6	28.1	6,7		
Gewählte Motornenn- leistung	[kW]	75		55		75		90		90		55		-11		
Motorbetriebsdrehzahl	[min ⁻¹]	1480	1287	1480	1269	1480	1275	1480	1376	1480	1376	1410	1230	1475		
zulässige Maximaldrehzahl	Imin ¹ 1	1490		1490		1490		1490		1490		1420				
Motortyp	11	Y21R 280 M4		Y21R 280 S4		Y21R 280 M4		Y10R 280 S4		Y108 280 S4		Y21R 280 S4				
Kennfeld	11	4SD00790		4SD00791		4SD00792		4SD00793		4SD00794		4SD00795				
Schallspektrum	11	48800358		48800359		45500360		45500361		45500362		45500303				
Schautelwinkel	17	+18		+22.5		+18		+23.5		+23.5		+22.5		20		
Betriebspunkt	[1]	W	K	W	K	W	K	W	K	W	K	W	K			

W ... Warme Jahreszelt K ... Kalte Jahreszelt

Preference Letter for Metro Almaty

Other references

Metro & Railway

London Heathrow Terminal 5 City Link

ABB

3100 mm rotor diameter -TLT's largest metro fan TLT as consortium leader for tunnel ventilation system

High availability system

- 19 km-link between airport and city station Paddington (TLT work period 2005-2007)
- Train speed 160 km/h
- Fulfillment of British health and safety standards
- Integrated system for high complexity with from one source
- 30 years life time requirement for ventilation equipment

Reference project - Design for tunnel ventilation systems (TVS)

London Heathrow Terminal 5 City Link

Realization: 2005 – 2006 完成: 2005 – 2006 年

TLT's largest installed Metro Fan with 3100mm rotor diameter motor power: 600kW, volume flow: 280 m3/s (100% reversible)

Preference Letter for London Heathrow Terminal 5 City Link from Balfour Beatty

"Scope of Supply:

- 4 TLT Metro-Exhaust-Axial Fans TA 31,5/14-1
 Total power 2400 kW (approx. 3120kVA)
- 2 TLT Metro-Exhaust-Axial Fans TA 22,4/14-1
 Total power 500 kW (approx. 650kVA)
- 2 TLT Metro-Exhaust-Axial Fans TA 22,4/14-1

Total power 220 kW (approx. 285 kVA)

We herewith confirm that TLT-Turbo GmbH has successfully carried out the work as described above, fulfilling its contractual obligations."

BBRP – Balfour Beatty Rail Projects (Contractor)

Important Reference project for tunnel ventilation systems (TVS)

Railway Tunnel Furka, Switzerland

Scope: "TVS" Tunnel Ventilation System for fresh air supply for civil works and smoke exhaust in case of fire and air drying with all installations, commissioning and testing

- 2 x 2-stage reversible axial fans for 6000 Pa (300°C / 2h temperature resistant)
- Motor drive power: 2 x 630 kW/fan
- Dampers
- Silencers

Reference project - Design for tunnel ventilation systems (TVS)

Metro Doha (Qatar)

As nominated sub-contractor of Siemens

Design work 2013-2015 together with Pöyry

- Definition & analysis of ventilation modes
- Definition of ventilation system
- Definition & analysis of tunnel cooling system
- Compliance with NFPA 130
- Final Design
- Improved design for efficiency
- Efficient operating modes for comfort and safety

35 underground stations130 km network with59 km tunnel

TLT as consortium leader for tunnel ventilation system

High availability system

- Train speed 90 km/h at headway of 90s with underground airport link to city
- Fulfillment of high international standards (e.g. NFPA 130)
- High complexity with tunnel cooling
- 30 years life time requirement for ventilation equipment

Reference project for tunnel ventilation systems (TVS)

Metro Baku (Azerbaijan)

Scope: "TVS" Tunnel Ventilation System with fans, drive system, local control system, silencer, dampers, installation, commissioning and testing

TVS (fans)

- 23 TA Metro supply / exhaust fans
- 250°C / 1h temperature resistant